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1. Phys.: Condens. Matter 6 (1994) 1529-1544. Printed in the UK 

A study of annealed and quenched averaging of the 
thermodynamic potential in a disordered system: an 
augmented space approach 

Tanusri Sahat and Abhijit Mookerjeets 
t S N Bose National Centre, DB17. Sector I .  Salt Lake City, Calcutta 700064, India 
1 International Centre for Theoretical Physics, Trieste 34100, Italy 

Received 4 August 1993 

Abstract. We use the augmented space method, introduced by one of us, to study the 
configurational average of the thermodynamic potential of electrons in a disordered system. 
lnvoking the relationship between the scattering diagram summation and the algebraic approaches 
to cluster generalizations of the coherent potential approximation, we indicate how such a0 
approximation may be carried out on the thermodynamic potential. We also study the difference 
between annealed and quenched averaging from the scauering diagrammatic approach. to obtain 
insight into the difference between the two processes. 

1. Introduction 

The study of phase bansformations and stability of solid solution phases requires knowledge 
of and accurate approximations to the configurational free energy. In particular, for 
disordered phases, physical properties may not be specific to a particular disordered 
configuration. By a disordered configuration we mean a microscopic realization of the 
random Hamiltonian specified by some set of random Hamiltonian parameters and their 
probability distributions. Hence one has to speak in terms of configurationally averaged 
quantities [I]. A convenient method for calculating a configurationally averaged quantity 
was introduced by Mookerjee 121 through the augmented space formalism (ASF). Earlier 
this formalism was applied successfully to obtain density of states and response functions 
for disordered systems. The main aim of this communication is to extend the fermion field 
theoretic approach to the ASF [a, 31 to calculate the thermodynamic potential for disordered 
solid solution phases in a way independent of any single-site, mean field theories. This 
is important, since in most of the current work the internal energy is averaged using a 
single-site, mean field approach, neglecting the effect of clusters. On the other hand, the 
entropy contribution is estimated using the cluster variation method, where the cluster effects 
predominate. In our approach, the entire free energy contribution will be averaged together 
in a cluster generalization of the coherent potential approximation (CPA). In addition, we 
intend to study the difference between quenched and annealed averaging using scattering 
diagrams. 

Configuration averaging of the thermodynamic potential can be done in two different 
ways: the so called annealed averaging and quenched averuging. If the system is allowed 
to cool slowly from its melt, so that the time scales associated with disorder and thermal 
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fluctuations are comparable and the subsystems comprising it can relax to their minimum- 
energy state, then the disorder and thermal averaging can be done on the same footing. 
This is annealed averaging. If on the other hand, the system is cooled so rapidly that the 
subsystems freeze in metastable local minima and the time scale associated with thermal 
fluctuations is much smaller than that for the disorder fluctuations, then thermal fluctuation 
averaging preceeds disorder configuration averaging. This is quenched averaging. The 
mathematical distinction between the two averaging processes lies in the fact that, in 
annealed averaging, disorder averaging is done on the grand potential before the logarithm is 
taken to yield the thermodynamic potential (free energy). In contrast, in quenched averaging, 
the disorder averaging is carried out on the thermodynamic potential itself, i.e. affer taking 
the logarithm of the grand potential. 

Quenched averaging of thermodynamic potential was carried out by Ducastelle and 
Gautier [4] for studying ordering effects in alloys. It was also used by Paquet and Leroux- 
Hugon [5], in a generalized version of the ASF, for studying magnetic transitions in the 
Hubbard model. However their methodology is applicable in the framework of the single- 
site CPA. On the other hand the ASF can include the effect of clusters and treat the internal 
energy and entropy contributions on the same footing. 

In section 2 we briefly review the ASF and its fermion field version, Section 3 involves 
disorder averaged thermodynamic potential calculation and corresponding scattering 
diagrams. Section 4 is devoted to the summation of the scattering diagrams, representing 
perturbation series expansion of disorder averaged thermodynamic potential and calculation 
of chemical potential from it. Section 5 deals with the study of the difference between 
annealed averaging and quenched averaging and summation of self-energy diagrams for the 
annealed case within a single-loop approximation. 

T Saha and A Mookerjee 

2. The augmented space formalism and fermion field theory 

In ASF configuration averaging is done by extending the usual Hilbert space H to include 
a configuration space 0. As the name suggests disorder effects are described in  0, 

Basic steps of this formalism are as follows. The probability density pi(ci)  of some 
random variable 6; satisfies the property 

p i ( € ; )  > 0 and 1 pi(ci)  = 1. 

These properties are specific to the imaginary parts of herglotz functions. So one can 
find a self-adjoint operator M(') in a configuration space @ i  such that p , ( t i )  can be expressed 
as 

As was pointed out by Mookerjee [2] this is the inverse of the well known problem of 
obtaining a local density of states starting from a self-adjoint Hamiltonian H. If p , ( ~ i )  can 
be expressed in a continued fraction expansion, then a representation of M(') is a tridiagonal 
matrix with the continued fraction coefficients in diagonal and off-diagonal positions. The 
averages quantity J f(ci)p(ci)dc can then be shown to be given by the groundstare average 
(uAlf(M"))luA), where Iu;) is the specific member of the basis states in which (2) holds. It 
is called the groundstare not in the sense of having the lowest energy but rather it represents 
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the reference state against which configuration fluctuations are described. For more than 
one random variable one defines a product space 0 = n@ @. This is spanned by states in 
which the set of variables E; assumes one of its configurations. The averaged quantity (f) 
is given by (uolf(M"))lu,,) where [U,,) = Iu;) is the ground state of the disorder field 
space 0 and MCi) = I @ , , , M i i ) ,  , , I , ,  . is an operator in the product space 0. 

For a disordered lattice problem with random site energies t i ,  the function f is initially 
a function of random elements of the Hamiltonian 

i j  

Pi and E j  are projection and transfer operators corresponding to a countable basis (li)] 
spanning the Hilbert space H .  The overlap matrix element Q, may be assumed to be non- 
random. According to the augmented space theorem the configurationally averaged quantity 
(f) will then be given by the ground state average of the operator 7 which is now the same 
function of an effective Hamiltonian fi defined in the augmented space Ilr = H @ 0 

The effective Hamiltonian fi contains complete information about the quantum 
behaviour of the system described in H and its statistical behaviour described in 0, 

The effect of disorder is to cause scattering. This scattering event can be pictured as 
interaction between the electron and pseudo-particles describing configuration fluctuations 
at each site against the reference state. If the disorder on each site is binary the statistics 
of these pseudo-particles should be fermionic because no two pseudo-particles can occupy 
the same site. The effective Hamiltonian fi can now be written in second quantized form 
[6] in both spatial and disorder parts giving 

bfk and bik create and annihilate pseudo-fermions at the ith site. k, k' are additional 
quantum numbers specifying the orthogonal basis states in q5;, They specify distinct values 
or configurations assumed by E ; .  The rank of the matrix Mi') is given by the number of 
orthogonal basis states in q+, i.e. by the number of k numbers. 

3. Calculation of the quenched averaged thermodynamic potential and scattering 
diagrams 

Since the effective Hamiltonian fi in augmented space has now been recast in second 
quantized form characterizing the disorder scattering as an interaction between the electron 
and pseudo-fermion present at the scattering site, the usual tools of diagrammatic field 
theoretic techniques can be applied. 

The quenched thermodynamic potential of a disordered alloy at temperature T can be 
written as 

(6) 
1 (a), = --(uolln Tr exp[p(H - uN)lluo). 
B 
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,¶ = I / k s T ,  p is the chemical potential of the system, and N is the operator giving the 
number of electrons. I U O )  = n” I$,) is the vacuum state of the field space. This is the 
state in disorder space that has no fluctuation, i.e. all the sites are assumed to be filled with 
pseudo-fermions of one specific field quantum number. As usual in the interaction picture 
formalism we define quantity U(,¶)  through 

T Saha and A Mookerjee 

exp[-,¶(Ho - UN + U’)] =exp[-,¶(Ho - uW)]U( ,¶ )  

HO is the unperturbed and H’ the interaction Hamiltonian. U @ )  satisfies the equation 

with H‘(,¶) = exp(,SHo)H’exp(-,¶Ho) and U ( 0 )  = 1. The solution of U ( @ )  in terms of 
the Dyson ordering operator is 

CO (-1)” 
U(,¶)  = 1 + - n !  /. . ./ dri . . . dr, P[H‘( r , )  . . . H’(rn)].  (7) 

“ = I  

Let us now consider the specific problem of AB, an alloy with impurity concentration c 
of A atoms. The effective Hamiltonian H can be split up into two parts: (i) the unperturbed 
Hamiltonian of the host A atom 

and (i i )  the interaction Hamiltonian 

The matrix M c i )  takes into account fluctuation of the ith site energy 6;  against tA. Thus 
this fluctuation x = 6;  - EA can be either zero with probability (1  - c) or IV‘ = ( 6 ~  - 6 ~ )  

with probability c. So, p ( x )  = (1  - c)S(x )  + cS(x - W ) .  
The Mc’) matrix appropriate to this probability distribution is 

The disorder quantum number k takes two values, ko and k l .  For simplicity let us define 
Bfko = and Bike = ./Zbihb Bik, = G b l k ,  and B;k, = G b a , .  

Now 

H’(r) = exp(r Ho)H‘ exp( -rHo) = W a/(r)a;(s) Bfk(r) Bip(r). 
i k k‘ 

Further, defining W,j(r, 5’) = tV’~S,~8(7 - r’), the above equation may be written as 
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Written in terms of U @ ) ,  the expression for the quenched thermodynamic potential 
becomes 

1 
(Q), = QO - -(uol in Tr exp[p(% - HO + PN)]U(B)IUO) (8) 

where QO is the thermodynamic potential for the unperturbed system characterized by the 
Hamiltonian Ho. In order to visualize how the scattering diagrams are generated in the 
augmented space, let us examine in detail the first-order term in the perturbation series 
expansion of (7): 

B 

Q] = -- ' /dr(vol [Tr W B ( %  - Ho+PN))H'(~)]~~"I~o). 
B 

The subscript con refers to the fact that only connected diagrams in the Hilbert space H are 
to be considered, since it is straightforward to show that the effect of taking the logarithm 
is to eliminate the contribution of all unconnected diagrams. 

Let us now define 

Go is the finite temperature Green function corresponding to the ordered system. The 
corresponding Green function in the disorder field space is defined by 

(u~lBltK.(rl)Bilr~(r~)lvg) = gik*,jkm(r19 52) = yAdijQ(ri - 72) 

where yo = -c and y1 = (1  - c). 
The above definitions follow from choice of the vucuum state as [ W O )  in the disorder 

field space @ which is a state in which all sites are described by quantum number ko. Thus 
bilvo) = 0 and bk, I V O )  = 0. 

Applying Wick's theorem to both the configuration and the spatial part of QI and 
employing the definition of Go and g we obtain an expression for the first-order correction 
as 

The corresponding scattering diagram is shown in figure 1 .  The solid lines represent the 
ordered Green function Go and the dotted lines represent the disorder field Green function 
g while the dashed lines represent the interaction Wij(rl, rz). Using the expressions for the 
Green functions we obtain 

Expressing in terms of Matsubara frequencies w, = i(2n + 1)np t p with n = 0,f  
I,f 2, . . , , -+W. Going over to momentum space we have 

GI = --lim cW p r-0 ' / ~ ~ G ' ( ( p , w " ) e x p ( - i w , r ) .  
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Figure 1. The first-order scattering diagram for the thermodynamic potential. Full lines indicate 
clcctron propagators. the dashed line the disorder propagator and the dotted line the interaction 
wii. 
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Figure 2. The two second-order mttering diagrams for the thermodynamic potential 

Similarly the contributions in second order originating from scattering diagrams shown 
in figure 2 will be 

and 

4. Summation of the perturbation series for the thermodynamic potential 

In order to sum up the perturbation series of the averaged thermodynamic potential it is not 
sufficient to consider only skeleton diagrams and to add the self-energy parts to the ordered 
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state Green function Go because this leads to over-counting difficulties. To get a summed- 
up expression for (a) we notice that if we open up any of the n closed solid line loops of 
any the nth order diagram for the thermodynamic potential, we obtain a possible nth order 
diagram for the configurationally averaged finite-temperature Green function. This is seen 
if we compare figure 3 with figure 1. 

.................. ... 

.................. 

Figure 3. The scattering diagram obtained by opening up one of the closed elecmon loops in 
Ule diagram for thermodynamic potential in figure 1. This belongs to the scattering diagram set 
for [he averaged electron propagator. 

The configurationally averaged finite-temperature Green function can be introduced as 

where (. . .) indicates thermal and ( v o l . .  . Ivo) indicates configurational averaging. 
Expanding U@) as a perturbation series and considering only connected diagrams in the 
Hilbert space H so as to cancel (U(P))  in the denominator the first-order contribution to 
the perturbation series will be 

Changing over to momentum and frequency space the above contribution becomes -cW 

Similarly second-order contributions corresponding to figure 4(a) and (b) are 
[Go(p,  U J . ) ] ~  . This is shown in figure 3. 

and 
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(a1 Ib l  

Figure 4. The scatlering d i a g m s  obtained by opening up one of lhe closed electron loops in 
the second-order scanering diagrams for the thermodynamic potential in figure 2. 

If w n )  denotes the total self-energy part of the nth order diagrams, proper or 
improper, then the nth-order contribution to the quenched thermodynamic potential will be 

The factor I ln  arises due to the over-counting difficuliy mentioned earlier. The difficulty of 
carrying out the summation with the factor I/n can be overcome by using a mathematical 
trick. We may consider the coupling parameter W to be varying, and integrate over different 
values of this parameter keeping the chemical potential p fixed. 

where C'(p .  w,) is the sum of all possible self-energy parts, proper or improper, 
Expressing in terms of the proper self-energy: 

C' = C++G°C+ ... 

we have an expression 

The chemical potential j i  can be determined from this by solving 
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N is the mean number of electrons present. From equation (10) one has 

The ordered free energy is given by 

Using this expression of the ordered free energy and the fact that differentiating any nth 
order diagram is equivalent to differentiating any of its n solid lines, it follows that 

I + )  tbl (Cl (d)  le1 

Figure 5. 
propagator. 

Irreducible scattering diagrams for the self-energy for the averaged electron 

Equation (9) relates the quenched thermodynamic potential to the self-energy part of 
the configurationally averaged finitetemperature Green function. The self-energy C can 
be determined by summing up the irreducible scattering diagrams as shown in figure 5. 
Summing up various infinite sets of scattering diagrams leads to various approximations. If 
we take into account correlated scattering from all sites within a cluster C exactly but ignore 
all scattering diagrams involving correlated scattering between sites inside and outside the 
cluster, the resulting approximation is a C-cluster coherent potential approximation (CCPA). 
The diagram for one such correlated scattering involving two sites is shown in figure 6. 
One of the simplest of these approximations is the single-site CPA. In this approximation 
only uncorrelated scatterings are taken in account. In diagrammatic language this amounts 
to considering only diagrams with non-overlapping pseudo-fermion loops associated with 
more than one site. Mookerjee [6] has shown that the summed-up series for the scattering 
diagrams in  augmented space in this case is identical to that of the algebraic approach of the 
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CPA. Using the correspondence between scattering diagrams and the graphical techniques of 
Haydock [7] and the direct relation between the algebraic and the graphical techniques, he 
has argued that a identical relationship holds for the summation of scattering diagrams for 
the correlated scattering from clusters and the algebraic, partitioning method for the CCPA. 
Recently a fast and accurate method for obtaining the averaged Green function and the self- 
energy has been developed by applying the ideas of the recursion method [8] directly on the 
augmented space [9].  The equivalence of scattering diagram summation to this algebraic 
method will allow us to use the above ideas to obtain the averaged thermodynamic potential 
i n  a generalized cluster approximation. 

T Saha and A Mookerjee 

...~ : ./ 

i 

Figure 6. A scattering diagram for correlated scattering from two sites. Such diagrams are 
neglected in the single-site coherent polential approximation. 

5. Annealed averaging of the thermodynamic potential 

The essential difference between quenched and annealed averaging of the thermodynamic 
potential is whether configuration averaging is done before or after taking the logarithm 
of the grand potential. In diagrammatic language, before a matrix element is taken in the 
configuration space, each vertex has two free arrows (see figure 7(a)). The operation of 
taking the matrix clement between Ivo) in configuration space, i.e. configuration averaging, 
amounts to joining these arrows in pairs to form disorder propagators. The same procedure 
is true for the trace operation in the real Hilbert space. Moreover, taking the logarithm 
amounts to discarding unconnected diaaams. In quenched averaging, since we take the 
trace first, followed by the logarithm, a diagram like figure 7(b) will be considered as an 
.unconnected diagram and hence discarded. On the other hand, for the annealed averaging, 
since we take the matrix element in configuration space after taking the trace, the same 
unconnected diagram now becomes connected in the full augmented space and hence when 
the subsequent logarithm is taken its contribution is not zero. Such diagrams in the full 
augmented space constitute the difference between the two different averaging procedures. 

Knspecting diagrams of various orders of the interaction parameter. it is straightforward 
to identify diagrams which, though unconnected in real space, are connected in the full 
augmented space via the disorder propagator. Some of these diagrams are shown in figure 8. 
Physically it is understandable why the annealed averaging should have extra scattering 
diagrams and why these should lead to a renormalization of the disorder propagator. In 
quenched averaging, the disorder fluctuations are frozen. Thermal fluctuations have no effect 
on disorder propagators. Once a system is in a disorder configuration, it always remains 
so. The picture of disorder propagators as propagators is a mathematical artifact, as was 
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Figure I. (a) A scatering vertex in augmented space. (b) A new scattering diagram for the 
annealed average. Note that for the anneded average electron propagators renomLzlize the 
disorder propagator. 

clearly understood in the scattering picture of the CPA earlier by Leath and co-workers [lo]. 
The delta function time dependence of the disorder propagator is a reflection of this fact. in 
annealed averaging, however, thermal fluctuations and fluctuations in disorder configurations 
take place on the same footing. It is therefore not surprising that we have to consider extra 
scattering diagrams that express these fluctuations and we do expect thermal fluctuations to 
renormalize the disorder propagators and vice versa. 

Summation of the perturbation series of the annealed thermodynamic potential requires 
the introduction of a new type of configurationally averaged finite temperature Green 
function. Let us call this the anneuled meraged Green function G A  in order to distinguish 
it from the configurationally averaged Green function introduced in section 4. Scattering 
diagrams for the annealed averaged Green functions obtained by breaking open solid lines of 
the diagrams for the annealed thermodynamic potential are shown in figure 8. Considering 
the specific case of figure S(c) , its contribution to the averaged Green function can easily 
be obtained by using the previously mentioned rules for dotted, dashed and solid lines: 

G,.,, (rxII r x , )Gr i , n (~ l .  ~77)G~, .~(57 .  ~ ~ ) G ~ , . ~ ~ ( r 3 ,  r5)G,, , , , (~5~ 5 3 ) .  . 
glt (XZr29 x88)gJJ (x858. X6%)g/l ( X 6  I r6, X&4)gl& (x4r4, XZrZ). 

For convenience we denote the quantum number ko by t and kl by .1. Expressing in 
terms of Matsubara frequencies, the contribution of above diagram to the self-energy will 
be 

~ ( 1  - C ) W ~ G , , , , , ( ~  XU - d2W4G,,,,,(w,)G,,.,,(w,). 
0, 

Thus we notice that the effect of the unconnected electronic Green function in the 
Hilbert space is to renormalize the right-going and left-going disorder propagators. If we 
denote the contribution of the right-going disorder prinpgatar by g, instead of -c and that 
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Figure 8. Salering diagrams that arise in annealed averaging of the thermodynamic potential 
but not its quenched avenge. 
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Figure 9. Suuering diagrams for an annealed propagator obtained by opening up one of the 
electron loops in the scattering diagrams shown in figure 8. 

of the left-going disorder propagator by gp instead of 1 - c then the summed-up self-energy 
diagrams including all connected diagrams in the full augmented space, connected either via 
the electronic propagator or via disorder propagator and containing only single propagator 
loops can be written as 

where y, and yc give the renormalized contributions of right-going and left-going disorder 
propagators;  ut^ represents the contribution from the disconnected portions of the electronic 
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propagator in the Hilbert space that simultaneously renormalizes a left-going and a right- 
going disorder propagator, an example of this being figure 8(a); Ns, ,  represents the number 
of diagrams containing s right-going and f left-going propagators. 

It is easy to check that N,T,l = ~N,- I , ,  + lNS , , - ]  with N,$,O = and  NO,^ = 0. 
The second term in the above expression for &(on) represents the correction from self- 
energy diagrams independent of U,, an example of this being figure 8(a). 

The Dyson equation corresponding to the right-going and left-going disorder propagators 
can be written as (with a denoting either right (r) or left ( I )  propagators) 

Y@ = g, -I g,%Y, 

with the self-energies ur and ut given by 

The last term is included to avoid double counting a factor already included in u ~ y , .  
Thus the evaluation of the summed-up expression for the self-energy requires knowledge 

of U,. ut and UT&. Inspecting equations (13a-c) i4 appears that, apart from the summation 
over Matsubara frequencies, the formally summed-up expression is similar to that of 
the quenched self-energy under the single-loop approximation, in which the roles of the 
electronic propagators and the disorder propagators have been interchanged. Hence, in 
order to perform the double summation over various orders of interaction and over the 
number of distinct ways of arranging s right-going and f left-going electronic propagators 
in equation (13a-c) let us define, analogous to Schultz and Shaper0 [3], agenerating function 
for U,, UC. and U+L 

with fT(u) = u'N, , , .  This satisfies the recursion relation 

where f' = df/du along with the initial condition fo = In U. 

generating function rI can be given by 
Utilizing the recursion relation of f,(u) , the partial differential equation satisfied by 

(i/Uu - a /au ) r , (u ,  U )  = i j v  + ar,(u, u)/aU.  

ar, rl 
at E* - 0:) (C -t U) ' 

Changing variables to = (U + v ) / Z  and 17 = (U - u ) / 2  leads to the canonical form 

1 - -  - =  
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Writing U,, = CU&J,) where (Y can either be r or I 

T Saha and A Mookerjee 

I 
U, (on) = - - rl (wG,, (~.)y.. w G,,,,, (w~)Y.). 

Y. 
Inserting this in equation (12) leads to the first-order ordinary differential equation 

due ( o n  1 a&") 1 
Ym- = Y . T + -  

d t  t t 
along with the boundary condition ua -+ 0 as t + 0. 

frequencies on, we rewrite the formal representation of up1 in the following way: 
In order to perform the summations in equation (130) apart from the sum over Matsubara 

U'tJ = Cu+r(o.) + WYPG,,,Z,(%) 
0. 

with 
m n 

u,4 = - C [ W G x ~ , x t ( w n ) ~ t ] "  C ~ , " y ; " N s . n - s  Ns,,,,. 
" = I  s=o I,+:,=" 

We notice that 

N,,,,, = ( n - l ) !  
I,+,,=" . 

We now define another generating function rz(u, U )  = Czl(n - l ) ! u " f n ( u )  where 
the function fn(u)  = ~ : = o u N r , n - , .  The recursion relation satisfied by fn(u) can be 
obtained easily as 

M u )  = 4 1  - u)f,'-,(u) + (n - I)uf.-t(u) 

with initial condition fl(u) = U. 

differential equation 
The generating function r 2 ( u ,  U) can be shown to satisfy the the second-order partial 

By changing the variables U and v to .$ = U and q = In U - In U, the above second-order 
partial differential equation can be reduced to the canonical form of a linear, inhomogeneous 
hyperbolic equation of second order 

aZr2fat aq  = m2 V ,  a r Z m  ardaq, rz) 

~ii.n.ar2fa~,ar2fatl,r2) = (r2ft)(i - t / e x p ( ~ ) ) - i f t .  

where 

In terms of this generating function we obtain 

= -r2 ( w G , , , ~ , ( ~ , ) Y ~ ,  Y , : Y ~ . ~ ) ,  
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We have to solve the equation along the curves defined by 6 = WG,,,x,(wn)yr and 
q = In(WG,,,,, (on)y$/yr)  in conjuction with the boundary conditions ( -+ 0, r2 -+ 

The solution of such hyperbolic linear partial differential equations with given sufficient 
boundary conditions is known exactly in terms of its Green function (see, e.g., [ 111). Once 
we have solved the equations (15) and (16), the summation over Matsubara frequencies can 
be done in a trivial way by performing the contour integration 

0, arz/at + 0. 

where the contour is taken to encircle the zeros of the denominator. 
As regards the summation in equation (9) the first and second terms are identical apart 

from summation over Matsubara frequencies and a change of sign in the case of the second 
term. If we introduce a third generating function 

with 

it is easy to check that this generating function satifies the first-order partial differential 
equation 

[ (1 - l l  U ) U  

ar3 ar3 
au au 

U -  - U -  = r 3 i + -  

Along with the boundary conditions U + 0, r3 + 0 for all values of U and 
U -+ 0, r 3  -+ 0 for all values of U .  The solution of this equation with the given boundary 
conditions leads to obtaining CA 

Finally since the annealed Green function is obtained from scattering diagrams of 
the annealed thermodynamic potential by breaking open the electronic propagator part 
the annealed averaged thermodynamic potential will be given by an equation identical to 
equation (7) where C has to be replaced by CA. The form of CA under the single-loop 
approximation can be obtained in the above prescribed manner. The advantage of this 
formalism is since it ueats the quantum as well as statistical part in a unified way, whatever 
approximation is made applies equally to both part. Our next plan is to extend this beyond 
the single-loop approximation so that the clustering effect can be treated on an equal footing 
for the internal energy part as well as for the configurational entropy part. 
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6. Summary 

The fermion field theoretic approach to the augmented space formalism has been applied 
for obtaining the thermodynamic potential of disordered alloys. The standard diagramatic 
technique has been employed for both types of averaging of thermodynamic potential- 
quenched as well as annealed-with the following results. 

( i )  The quenched thermodynamic potential of disordered alloys has been obtained 
in  this formalism in a general way extending beyond the single-site coherent-potential 
approximation as was done earlier by Ducastelie. 

(ii) The difference between quenched and annealed averaging of the thermodynamic 
potential appears on considering certain additional classes of scattering diagram in the latter 
case. These are such that although they are disconnected in the real Hilbert space and would 
have no contribution if the logarithm were taken prior to averaging, they become connected 
in full augmented space via disorder propagators. Thus they contribute to annealed and not 
to quenched averages. 

(iii) This difference between quenched and annealed averaging is manifested in the 
summed-up self-energy E, which in turn is related to the thermodynamic potential. 
Considering additional contributions to the self-energy CA for the annealed case, the effect 
of the disconnected portion of the diagrams in Hilbert space is to renormalize the disorder 
propagators. 

(iv) Under the single-loop approximation, two types of disorder self-energies at and 
a,, renormalising either the left-going or right-going disorder propagator, and another a + ~ ,  
renormalizing both of them simultaneously, may be obtained from generating functions, 
which appear as solutions of first-order differential equations and a linear hyperbolic partial 
differential equation of second order followed by summations over Matsubara frequencies. 
Given the b o u n d q  conditions these differential equations have solutions whose formal 
expressions are available. 
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